Covariance
Signature: Kernel<'T>
|
|
LogLikelihood(data)
Signature: data:seq<Observation<'T>> -> float<MeasureOne>
|
Computes posterior log likelihood of a Gaussian process
given a set of observed data
|
Mean
Signature: MeanFunction
|
|
NoiseVariance
Signature: float option
|
|
PosteriorGaussianProcess(...)
Signature: data:seq<Observation<'T>> -> (newLocations:'T []) -> Vector<float> * Matrix<float>
|
Computes mean vector and covariance matrix of a posterior Gaussian
process given a set of observed data points
and a set of new time points without observed values.
|
Predict(data newLocations)
Signature: data:seq<Observation<'T>> -> (newLocations:'T []) -> float [] * float []
|
Predictive distribution of a Gaussian process given a set of observations
Parameters
- data - observed data
- timepoints - locations for prediction
|
PredictiveLogLikelihood(data x)
Signature: data:seq<Observation<'T>> -> x:Observation<'T> -> float
|
Predictive log likelihood of a Gaussian process
|