Ariadne


GaussianProcess<'T>

Constructors

ConstructorDescription
new(covariance, noiseVariance)
Signature: (covariance:Kernel<'T> * noiseVariance:float option) -> GaussianProcess<'T>
new(...)
Signature: (covariance:Kernel<'T> * meanFunction:MeanFunction * noiseVariance:float option) -> GaussianProcess<'T>

Instance members

Instance memberDescription
Covariance
Signature: Kernel<'T>
LogLikelihood(data)
Signature: data:seq<Observation<'T>> -> float<MeasureOne>

Computes posterior log likelihood of a Gaussian process given a set of observed data

Mean
Signature: MeanFunction
NoiseVariance
Signature: float option
PosteriorGaussianProcess(...)
Signature: data:seq<Observation<'T>> -> (newLocations:'T []) -> Vector<float> * Matrix<float>

Computes mean vector and covariance matrix of a posterior Gaussian process given a set of observed data points and a set of new time points without observed values.

Predict(data newLocations)
Signature: data:seq<Observation<'T>> -> (newLocations:'T []) -> float [] * float []

Predictive distribution of a Gaussian process given a set of observations

Parameters

  • data - observed data
  • timepoints - locations for prediction
PredictiveLogLikelihood(data x)
Signature: data:seq<Observation<'T>> -> x:Observation<'T> -> float

Predictive log likelihood of a Gaussian process

Fork me on GitHub