Ariadne


SquaredExp

Isotropic squared exponential covariance function also known as the Gaussian kernel or RBF kernel

k(x,y) = σ² exp(-1/(2lengthscale²) * (x - y)²) + δ[x=y] σ²_{noise}

σ² is the signal variance σ²_{noise} is the noise variance

Constructors

ConstructorDescription
new(...)
Signature: (lengthscale:float * signalVariance:float * noiseVariance:float) -> SquaredExp

Instance members

Instance memberDescription
GaussianProcess()
Signature: unit -> GaussianProcess<float>

Creates Gaussian process with squared exponential kernel function and zero mean.

Kernel(x1, x2)
Signature: (x1:float * x2:float) -> float

Construct a kernel function that can be used in a Gaussian process

Lengthscale
Signature: float
NoiseVariance
Signature: float
Parameters
Signature: float []
SignalVariance
Signature: float
Fork me on GitHub