Ariadne


GaussianProcess

Nested types and modules

TypeDescription
GaussianProcess<'T>
Kernel<'T>
MeanFunction
Observation<'T>

Type for data representation

Functions and values

Function or valueDescription
addObservationNoise noiseVariance matrix
Signature: noiseVariance:float option -> matrix:Matrix<float> -> Matrix<float>

Add observational noise to a covariance matrix

covarianceMatrix kernel input1 input2
Signature: kernel:Kernel<'T> -> input1:'T [] -> input2:'T [] -> Matrix<float>
Type parameters: 'T

Computes covariance matrix between two sets of inputs using a specified covariance function (kernel)

mvNormalLoglik (...)
Signature: meanVector:Vector<float> -> covarianceMatrix:Matrix<float> -> x:Vector<float> -> float

Compute log likelihood of a standard multivariate normal distribution

plot data gp
Signature: data:seq<Observation<float>> -> gp:GaussianProcess<float> -> GenericChart

Displays a Gaussian process regression curve given a set of data points Shows a region of +/- 1 standard deviations from the posterior mean.

plotRange (timeMin, timeMax) data gp
Signature: (timeMin:float<MeasureOne> * timeMax:float<MeasureOne>) -> data:seq<Observation<float>> -> gp:GaussianProcess<float> -> GenericChart

Displays a Gaussian process regression curve given a set of data points Extrapolates the figure to [timeMin, timeMax] interval. Shows a region of +/- 1 standard deviations from the posterior mean.

Fork me on GitHub