Ariadne


SquaredExp

Nested types and modules

TypeDescription
Prior
SquaredExp

Isotropic squared exponential covariance function also known as the Gaussian kernel or RBF kernel

k(x,y) = σ² exp(-1/(2lengthscale²) * (x - y)²) + δ[x=y] σ²_{noise}

σ² is the signal variance σ²_{noise} is the noise variance

Functions and values

Function or valueDescription
fullGradient data parameters
Signature: data:seq<Observation<float>> -> parameters:float [] -> float<MeasureOne> []
ofParameters parameters
Signature: parameters:seq<float> -> SquaredExp
randomWalkProposal density location
Signature: density:Normal [] -> location:float [] -> float []
transitionProbability (...)
Signature: density:Normal [] -> oldLocation:float [] -> newLocation:float [] -> float
Fork me on GitHub